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ABSTRACT: We report a systematic analysis of conformational ensembles generated from multiseed molecular dynamics
simulations of all 15 known genetic variants of Aβ42. We show that experimentally determined variant toxicities are largely
explained by random coil content of the amyloid ensembles (correlation with smaller EC50 values; R

2 = 0.54, p = 0.01), and to
some extent the helix character (more helix-character is less toxic, R2 = 0.32, p = 0.07) and hydrophobic surface (R2 = 0.37, p =
0.04). Our findings suggest that qualitative structural features of the amyloids, rather than the quantitative levels, are
fundamentally related to neurodegeneration. The data provide molecular explanations for the high toxicity of E22 variants and
for the protective features of the recently characterized A2T variant. The identified conformational features, for example, the local
helix−coil-strand transitions of the C-terminals of the peptides, are of likely interest in the direct targeting of amyloids by rational
drug design.

KEYWORDS: Amyloid beta, Alzheimer’s disease, structural ensembles, toxicity, coil

Alzheimer’s disease (AD) is a major neurodegenerative
disease causing loss of cognitive skills, difficulty in

problem solving, and changes in behavior and identity.1,2

Deposits of post-translationally modified β-sheet aggregates
consisting of amyloid beta (Aβ) outside neurons and of tau
protein inside neurons are two of the main pathological features
of AD.3 The Aβ peptides vary in length, with the Aβ42 isoform
being particularly toxic.4,5 Aβ peptides are produced from the
transmembrane amyloid precursor protein (APP) upon
proteolysis by the combination of β- and γ-secretases.6,7 The
Aβ peptides also accumulate inside neurons as soluble
oligomers, which are now perceived to be the pathogenic
forms of Aβ8−10 and thus desirable targets for next-generation
Alzheimer drugs.11,12

More than 30 mutations have been reported in APP: 15
missense point mutations have been identified in humans
within the Aβ42 region of APP (672−713), as shown in Figure
1A. Of these, the Flemish (A21G),13 Arctic (E22G),14 Italian
(E22K),15 Dutch (E22Q),16 and Iowa (D23N)17 mutations
occur in the middle of the Aβ sequence close to the α-cleavage
site that leads to nonamyloidogenic cleavage of APP. Mutations
at E22 and D23 lead to substantially more toxic and

aggregation-prone Aβ variants in cell assays.18,19 The English
(H6R),20 Taiwanese (D7H),21 and Tottori (D7N)22 mutations
occur in the hydrophilic N-terminal part of the peptide and
cause early onset familial AD (FAD). These mutants are also
substantially more aggregation-prone than wild-type Aβ.21,23

Both monomers24 and dimers25,26 are present in humans,27 and
monomers have been associated with possible protective
normal functions.28 Yet, under certain conditions, these forms
can undergo conformational changes into β-strand-containing
oligomers, and eventually to β-sheet-rich fibrils.29−31 The
genetic variants have been shown to affect Aβ dynamics and
monomer folding and oligomerization.32,33

The A2T34 and A2V35 mutations at the second position of
Aβ are of particular interest, since A2T has been shown to be
protective against AD; it also reduces β-secretase cleavage of
APP.36 A2T-overexpressing human neurons revealed reduced
aggregation consistent with a protective effect,37 that is, both
changes in steady-state levels and long−short isoform ratios
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and specific chemical properties of the produced variant may be
involved: Which one is more important is not yet known.
Interestingly, in contrast the A2V variant is pathogenic in the
homozygous state.38

The Piedmont variant (L34V) causes severe cerebral amyloid
angiopathy (CAA) without amyloid plaques or neurofibrillary
tangles.39 The E11K mutation causes early onset FAD and
affects β-cleavage.40,41 The mutation K16N occurs at the α-
secretase cleavage site which likely interrupts this cleavage
activity and results in higher quantities of Aβ, but is also
resistant toward Aβ-degradation by neprilysin,42 again illustrat-
ing how genetic variants can affect both APP processing and
thereby, steady-state amyloid levels and ratios (the “quantita-
tive” effect), and the chemical properties of the produced
variant Aβ (the “qualitative” effect). The A42T mutation occurs
at the γ-secretase cleavage site and gives rise to late-onset
Alzheimer’s disease with cerebrovascular lesions.43−45

We used multiseed molecular dynamics (MD) simulations of
all known missense point mutations in Aβ42 to systematically
pinpoint structural and chemical features that may contribute to
toxicity of these variants. Realistic monomer ensembles are
central to recent efforts that screen for Aβ-targeting
compounds.46,47 Since structural ensembles and properties
can be quite method-dependent,48 it is important to study the
variants in their totality. This first complete comparison of Aβ
variants shows that simple, specific conformational features of
the variant ensembles correlate strongly to the variant’s toxicity
and thus that amyloid toxicity is very much a qualitative
(conformational and chemical) rather than quantitative
(steady-state levels) feature of amyloids.

■ RESULTS AND DISCUSSION

For each variant, four independent simulations were performed
to improve sampling; backbone RMSD graphs can be found in
Supporting Information, Figure S1. The RMSDs gradually
increased up to typically 20 ns of simulation time and then
stayed at 6−12 Å and displayed horizontal RMSD plots in most
cases. The large RMSDs are consistent with expectations and
previous observations of these highly disordered peptides.49−51

It is also expected that the peptides will visit several
conformational basins in phase space. Several transitions are
observed in some of the variants and in the wild type during
simulation, showing why multiple simulations are necessary for
each variant. The properties that we discuss are averaged over
the last 20−100 ns of all four simulations for each Aβ variant.

Not all the amyloid variants have been previously
investigated, and experimental NMR structures have only
been reported for the wild type. Our systematic simulations
thus enable the first complete comparison of the structural
ensembles of all variants and the first statistical correlation to
experimental toxicities. Figure 1B shows the secondary
structure content for each Aβ42 variant, derived using
Amber99sb-ILDN in explicit water, known to have a realistic
secondary-structure balance.52−54

In general, our simulations reveal a tendency toward turns
and coil in all Aβ42 variants. In comparison to the wild type, the
variants of the C-terminal region (L34 V, A42T, and A42V)
and the Italian (E22K) and Dutch (E22Q) mutants have
considerably more turn character. All mutants except E11K
showed increased β-strand character, with the most strand-
prone variants being A42V, A2V, Piedmont (L34 V), Tottori
(D7N), and A2T (6−7% strand character). The starting
structure of Aβ42 from an NMR experiment in a water-co-
solvent mixture had 36% helix character. Helix character
decreased in all variants during simulation, consistent with the
simulations occurring in 100% water, which reduces helix
content and increases coil: For comparison, the NMR structure
of the related Aβ40 isoform in pure water, 2LFM,55 has ∼25%
helix and more coil than other NMR structures deposited in the
PDB, consistent with our ensembles. This structure has been
successfully used to screen for Aβ-targeting compounds,46,47

and properties of FAD mutations mapped on this ensemble
correlate with FAD patient age of onset.56 Other NMR
structures of Aβ, such as 1IYT57 and 1BA4,58 have more helix
character because the experiments were conducted in less polar
environments (micelles and cosolvents) where helix dipoles are
stabilized; this is, incidentally, also why helices tend to be
favored in membranes. In the variants D7N, E22K, E22Q, L34
V, A42T, and A42V, helix character was <18%. The numerical
data of this analysis are in the Supporting Information, Table
S1.
The secondary-structure propensity of each residue of each

Aβ variant is shown in Supporting Information Figures S2
(A2T to K16N) and S3 (A21G to A42V). Wild-type Aβ42 has
four segments with substantial helix propensity (blue), 2−5,
11−18, 23−28, and 36−38 and has almost no strand character
(red). Many of the variants (in fact, all except E22K) have
tendencies to strand formation in the C-terminal, hydrophobic
part of the peptides supposedly involved in oligomerization. It
is notable that helix character is particularly low and coil/turn
character particularly high for E22 variants known exper-

Figure 1. (A) Wild-type and mutant structures of Aβ42 shown in stick format; blue refers to positively charged, green to polar uncharged, and orange
refers to hydrophobic. (B) Percentage of secondary structure for all Aβ variants assigned according to the DSSP algorithm.
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imentally to be most toxic in cell assays. This prompted us to
correlate available experimental toxicities of the variants against
our computed conformational properties (see below).
We performed a linear regression analysis of the ensemble

structural properties the variants, plotted against the relative
experimental EC50 values of Aβ42 variants18,21,32,38,42 normal-
ized against that of the wild type set to 1 (numerical data in
Supporting Information, Table S2). We observed correlations
between coil character (R2 = 0.536, p = 0.010), helix character
R2 = 0.316, p = 0.071), hydrophobic surface area (R2 = 0.369, p
= 0.047), and radius of gyration (Rg) (R

2 = 0.140, p = 0.256) vs
experimental cell toxicity (EC50) values of the Aβ42 variants
(data shown in Figure 2). Furthermore, from outlier analysis,
we found that leaving a single data point out substantially
increased correlation: D23N was an outlier for helix and
hydrophobic surface, whereas A21G was an outlier for Rg.
Removal increased R2 values from 0.316 to 0.472 for helix
character, 0.369 to 0.665 for hydrophobic surface, and 0.140 to
0.587 for Rg (Supporting Information, Figure S4). We also note
that a corresponding regression analysis against a second
experimental toxicity data set for the related Aβ40 isoforms gives
equally significant correlations for the same structural proper-
ties (Supporting Information, Figure S5), further validating our
results and indicating that the conformations are central to
understanding the relative toxicities of longer vs shorter Aβ
isoforms.
Of the four properties that had significant relations to

experimental toxicities, helix character showed a positive
correlation whereas the remaining properties correlated
inversely with corresponding EC50 values; that is, helix
character relates to reduced toxicity, whereas coil, surface
exposure, and conformational size relate to higher toxicity.
These observations are qualitatively in agreement with the
notion that α → β transitions are required to form oligomers
and that coil and hydrophobic exposure increases the
propensity to oligomerize.30 Our data reveal strong quantitative
correlations that offer insight relevant to molecular targeting of
the specific conformational features that increase amyloid
toxicity. The increased tendency toward helix−coil-strand

transition is consistent with an increase in hydrophobic
exposure to solvent and increased overall radius of gyration.
The E22 mutants (Arctic, Italian, and Dutch) were found in

cell assays to be 10-fold more toxic and the D23N (Iowa)
variant 2−3-fold more toxic than wild type Aβ42.

19 In contrast,
the A21G (Flemish) mutant has been observed to be slightly
less cytotoxic than wild type Aβ42.

19 These findings are
explained by our structural ensembles of the variants, as
emphasized more clearly in Figure 3 showing the representative

(most populated) structures of these four variants. The E22
variants had 32−36% coil character, dropping to 28 and 23% in
D23N and A21G. The helix percentage ranged from 15−21%
in the E22 variants but increased to 28−29% in A21G and
D23N. While the average hydrophobic surface areas of D23N
and A21G were 1732 and 1785 Å2, respectively, the most

Figure 2. Correlating structural ensembles of amyloid variants directly to experimental toxicity data: (A) vs coil character; (B) vs helix character (C)
vs hydrophobic exposure of the ensembles; and (D) vs radius of gyration of the ensembles.

Figure 3. Representative structures for (A) Arctic (E22G), (B) Italian
(E22K), (C) Dutch (E22Q), and (D) Iowa (D23N) mutants.
Structures were extracted from the most populated clusters of cluster
analysis.
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pathogenic E22 mutants exhibited substantially increased
hydrophobic surface areas of 1920−2000 Å2.
Specific intermolecular interactions between hydrophobic

surfaces of partially folded intermediates are likely to lead to
aggregation.59 Hence, the hydrophobic surface area is an
important structural feature of potential pathogenic importance,
and we computed this for the ensembles of the studied variants.
When compared to wild type 1882 Å2, the most toxic E22
mutants (Arctic, Italian, and Dutch) had hydrophobic surface
areas of 1999, 1995, and 1921 Å2, respectively, the highest of all
variants. The E22 mutants also displayed relatively higher Rg
values consistent with more extended and exposed conforma-
tions. Interestingly, the protective A2T variant and the late-
onset A42T variant displayed the lowest hydrophobic surface
areas of 1697 and 1693 Å2, respectively (Figure 4).
In conclusion, we have reported the first complete

comparison of known human genetic variants of Aβ relating
to AD and CAA and found that experimental relative toxicities
can be largely explained by specific structural features of the
variant ensembles. In particular, coil character and hydrophobic
exposure, concomitant with reduced helix propensity of the
ensembles, provide a statistically significant structure−property
relationship for amyloid toxicity and also reveal insight into the
protective nature of A2T vs pathogenic A2V. The toxicity of
E22 variants is mainly due to increased tendency toward helix−
coil-strand transitions, with strand tendencies emerging in the
C-terminal of the amyloids known to be critical for
oligomerization. The quantitative structural features identified
from this study may be relevant to rational design of amyloid-
modifying drugs.

■ METHODS
Structural Models. Aβ is an intrinsically disordered peptide whose

secondary structure varies substantially depending on chemical
environment.56 Aβ42 is the more pathogenic species likely to seed
oligomers, and thus we studied this isoform of the peptide; in addition,
many relevant experimental data are available for this isoform. We
were interested in the free soluble monomer ensemble as starting
point for amyloid processes. There are available crystal structures of
Aβ parts cocrystallized with other proteins (e.g., PDB ID: 2G47,
2WK3) and of Aβ multimers. However, no full-length crystal structure
of the free Aβ monomer is available, because it is too disordered. Thus,
as starting structure we used the published NMR structure of full-
length Aβ42 with PDB code 1Z0Q.30 During MD equilibration, the

ensembles are equilibrated effectively to different ensembles character-
istic of the methods applied, showing that the detailed starting
structure is less important.48 The mutant structures were prepared
from the first conformation of 1Z0Q by using protein design extension
in Discovery studio 4.0, as described previously.56

Simulation Protocol. All the Aβ42 structural models that consist
of both wild type and mutants were subjected to MD simulation using
Gromacs 4.6.7.60,61 We employed the Amber99sb-ILDN54 force field,
which performed well in our previous force field calibration study on
this peptide;48 its good secondary structure balance, crucial for
obtaining a balanced and realistic structural ensemble of Aβ, has also
been noted previously.52−54

The peptides were initially placed in the center of a cubic box with
dimensions 7.1 × 7.1 × 7.1 nm3

filled with ∼12 020 TIP3P62 water
molecules, the number depending slightly on mutant type. A distance
of 1.0 nm was maintained between the protein and the wall of the box
to avoid interactions between periodic images. The net negative charge
of the system was neutralized by replacing water molecules with Na+

ions. Additional water molecules were replaced by Na+ and Cl− up to
150 mM NaCl to simulate a realistic ionic strength. All the modeled
systems were subsequently energy minimized by using the steepest
descent algorithm in Gromacs.

To relax the solvent and hydrogen atom positions, the systems were
subjected to two-phase position restrained MD. Initially, the system
was equilibrated within a canonical NVT ensemble for 100 ps using
Berendsen temperature coupling.63 Subsequent equilibration was
carried out in an isothermal−isobaric NPT ensemble for 500 ps
using the Nose−Hoover thermostat64 and Parrinello−Rahman
barostat65 at 300 K and 1 atm. The long-range electrostatic
interactions were treated with Particle Mesh Ewald (PME) method.66

A cutoff of 10 Å was used for Lennard−Jones and Coulomb short-
range interactions, and the Linear Constraint Solver (LINCS)67

algorithm was used to constrain covalent bonds.
To improve stochastic sampling for all mutants and the wild type,

all 16 systems were simulated by four independent 100 ns simulations
for a total of 400 ns for each system. We clustered the conformations
of the ensembles from 20−100 ns of each simulation using a clustering
method developed by Daura et al.,68 based on the backbone atoms and
an RMSD cutoff of 3.0 Å.

Analysis of Conformational Properties. The secondary
structures were calculated by using the DSSP algorithm.69 DSSP
uses different structural notations during secondary structure
determination. We grouped different structural elements into four
types: “helix” constitutes α-helix, 310-helix, and π-helix; “beta”
constitutes extended strand and residues in isolated β-bridges; “coil”
represents pure coil features; and “turn” represents hydrogen-bonded
turns and bends. The top 10 representative structures from clustering

Figure 4. Solvent accessible surface areas and radius of gyration; surface areas were calculated from DSSP program, and radius of gyration was
calculated from g_gyrate tool of Gromacs.
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analysis were used for secondary-structure propensity calculation,
weighted by the size (phase space density) of each cluster. To obtain
the residue-wise average secondary structures, we combined the four
individual trajectories of each variant spanning from 20−100 ns.
Secondary structures were calculated for each frame with a frequency
gap of 10 ps. The computed properties were correlated against the
data set of normalized experimental toxicities previously described.5
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